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Abstract: - Continuous Time Generalized Predictive Control (CGPC) can deal with non-minimum linear 

systems and thanks to this property it restricts the predicted input to be constant in the future by choosing an 
appropriate control order so cancellation of non-minimum zeros is not performed. In this article the CGPC is 
analyzed by using classical control theory, the analysis is carried out through a numerical example. 
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1 Introduction 
The CGPC studied in this paper is a special case of 
NCGPC, [1, 2] which is an alternative nonlinear 
predictive controller; this controller was developed 
in a different way than conventional nonlinear 
controllers. The NCGPC is based in the prediction 
of the system output and due to the fact that it was 
not derived with the objective of cancelling 
nonlinearities, as feedback linearization techniques 
do, the NCGPC has two advantages: First, it can 
constrain the predicted control through -additionally 
the response becomes slow and the control is not 
very active-, and second, when , there is not zero 
dynamics cancellation and then the internal stability 
is preserved. Therefore, the NCGPC [2] provides a 
good way to handle systems with zero unstable 
dynamics. Another of the main advantages of 
NCGPC control schemes is that, when Nu= Ny-r 
they do not require on-line optimization and 
asymptotic tracking of the smooth reference signal 
is guaranteed. The CGPC, like its non-linear 
counterpart, retains these characteristics. One of the 
most important questions in MPC (Model Predictive 
Control) is if a finite horizon MPC strategy does 
guarantee stability of the closed-loop or not.  In this 
paper the characteristics and the stability will be 
analysed through the classic control.  
 

 

2 Development of the CGPC 
The linear version of CGPC [4], originally was 
developed by using transfer function. In this section, 
the linear version of CGPC is recast in state space 
form following the same steps as the NCGPC 

presented in [1, 2]. Consider a linear SISO system 
( ) ( ) ( )

( ) ( )

x t Ax t Bu t

y t Cx t

= +

=

ɺ
                         (1) 

Where nRx∈ , Ry∈  and A, B, C are matrices 

of appropriate dimensions. 
 

A.  Prediction of the output  

 
The output prediction is approximated for a 
Maclaurin series expansion of the system output as 
follows. 
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N
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The predictor order Ny is the number of the times 
that the output must be differentiated. 
 
B.  Derivative emulation  

 
As in the nonlinear case the predictive control is 
based in taking the derivatives of the output, which 
are emulated by 

             

          

           

          

                     
( ) 1( ) ( ) ( )y y yN N N rry t CA x t CA Bu t

−−= + +⋯   (6) 

( ) ( )y t CAx t=ɺ

(2) 2( ) ( )y t CA x t=

⋮
( ) 1( ) ( ) ( )r r ry t CA x t CA Bu t−= +

⋮
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These output derivatives are obtained from the 
system of equation (1), where r is the relative order.  

Output and its derivatives can be rewritten by: 
 

0 ( ( )) ( ( ))
y uN N

Y Y x t H x t u= +    (7) 

where 
TrN

N
y

u
uuuuu ][ )()2( −= ⋯ɺ  
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 (8) 

 
Thus, predicted output equation (3) is given by 

0( )
y u yN N Ny t T T Hu T Y+ = +   (9) 

 
C.  Prediction of the reference trajectory of the 

output  
 
To drive the predicted output along a desired 
smooth path (reference trajectory) to a set point. A 
reference trajectory is chosen as the output of the 
following reference model [4]. 
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    (10) 
The Laplace operator s represents the Laplace 

transform with respect to future variable T. 
Considering the following approximation by 

using Markov parameters. 
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The reference trajectory is given by: 
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0 1 2( , ) [ ][ ( )]
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y

T T
w t T r rT r r w y t

N
= + + + + −⋯           (12) 

where w  the set-point. Rewriting this equation. 
 

 *( , )
yr N rw t T T w=    (13) 

where  
))((][ 10 tywrrrw T

rr −= ⋯  

 

and 
yNT is given by (5) 

D.  Cost function minimization  

The cost function is not defined with respect current 
time, but respect a moving frame, which origin is in 
time  and T is the future variable. CGPC calculates 
the future controls from a predicted output over a 
time frame. The first element u(t) of the predicted 
controls is then applied to the system and the same 
procedure is repeated at the next time instant. Thus, 
predicted output depends on the input u(t) and its 
derivatives, and the future controls being function of 
u(t) and its Nu-derivatives. The cost function is: 

dTtTwTtyuJ r

T

T

N y

2** )],(),([)(
2

1

∫ −=       (14) 

where 

*( , ) ( ) ( )y t T y t T y t= + −   (15) 

It can see that equation (15) is the same predicted 
output equation (9), except that the first element of 
�
� is set to zero. With the substitution of equations 

(3) and (7) the cost function becomes 

2

1

0 2( ) [ )]
u y y y y

T

N N N N N r

T

J u T Y T Hu T w dT= + −∫  (16) 

and the minimization results in 

)( 0YwKu rNu
−=    (17) 
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dTTTT
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The ijth element of Ty is: 
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 and    

][][ 1
y

T

y

T THHTHK −=             (19) 

As explained above, just the first element of 
uNu

is applied. The control law is given by  

][)( 0Ywktu r −=   (20) 
 

3 Closed Loop for Stable and 

Minimum Phase Systems 
In this section the case when Nu= Ny-r is chosen for 
stable and minimum phase systems will be 
analyzed. It is considered that the following 
assumptions are satisfied 

t
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• The system given by equation (1) is stable 
• It has LHZs 
• Nu= Ny -r 

• The system states must be measurable. 
 

The control law given by equation (20) is 
analyzed; the matrix H equation (9) is decomposed 
as  





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
=
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H
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H1 is a zero matrix with dimension ( 1)yr N r× − + , 

and H2  is a lower triangular matrix with dimension 
)1()1( +−×+− rNrN yy
given by: 
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The matrix Ty equation (5) is decomposed as  
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Equation (22) can be written as  

][
2122

11
2 ITTHK yy

−−=   (23) 

 
With I unitary matrix with dimension 

( 1) ( 1)y yN r N r− + × − + . The first row of the inverse 

of H2 is given by 

 1 1
2 1/ 0 0rh CA B− − =  …              (24) 

 
Then, the first row of K, which will be called k  

[ ]1 21

1
1 0 0

rr
k t t t

CA B−= … …       (25) 

 
where t1, t2, t3, … tr are elements of the first row 

of 
2122

1
yy TT − . The control law is given by: 
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β
−

=
−

− − −
=

∑
       (26) 

Where 
     )/(1 11201 −+++= rrr rtrtrt ⋯β  

)/( 112011 −+ +++= rrii rtrtrtt ⋯β 1,2,1 −= ri …        (27) 

 
We can notice, that incredible as it may seem, 

large Ny does not require a bigger computational 
effort, because as we can see from equation (26), the 
control depends just on the r-first derivatives, thus 
the rest of the derivatives only have influence in 
obtaining the parameters of ti, which just depends on 
T. Moreover, Ny can be chosen as the smallest 
predictor order, which is such that the predicted 
output depends on u(t). The relative degree r of the 
system is exactly equal to the number of times the 
output must be differentiated for the input to 
explicitly appear. Because of this, the relative 
degree r will be the smallest predictor order Ny. 

We can conclude if Nu=Ny-r, the control law is 
independent of the last Ny  -r derivatives. Then it is 
possible to calculate the parameters βi considering 
the largest Ny. without the use of the remaining 
derivatives. We will consider this case, in all the 
process, except in the non-minimum phase systems.  

Substituting equation (26) into the rth derivative 
given by equation (6) leads to: 

i
r

i r

i

r

r yywty ∑
−

=

−−=
1

1

)(
1

)(
β
β

β
  (28) 

Rearranging and taking Laplace transforms, the 
resulting closed-loop transfer function is given by:  

 
)()()( sWsGsY =  

1
1 1

1 ( )
( )

1 ( )r r

r r

N s
G s

s s s D sβ β β−
−

= =
+ + + +…

     (29) 

 
Note that, by using the Routh-criterion, we can 

show that the systems are stable. 
If the model is considered as a perfect model, 

this state feedback places the poles at the roots of 
the polynomial 

0

( )
r

k

k

k

s D sβ
=

=∑ . 

The predictive control does not require on-line 
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optimization and asymptotic tracking of the smooth 
reference signal is guaranteed. 

The state feedback of equation (26) cancels all the 
zeros of the process by placing poles at the same 
values. This fact is analogous with NCGPC when 

rNN yu −= , the control feedback cancels the zeros 

dynamics. Therefore, as with NCGPC, the process 
has to be minimum phase in order to preserve 
internal stability, unless 

u yN N r< − , in which the 

case the zero cancellation is not carried out. 
 

 

4 Closed Loop for Stable and Non-

Minimum Phase Systems: A 

Numerical Example 
In this section the case when Nu< Ny  -r   is chosen 
for stable and non-minimum phase systems will be 
analysed through a numerical example. It is 
considered that the following assumptions are 
satisfied. 

• The system given by equation (1) is stable 
• It has RHPZ’s 
• Nu= Ny -r 

Consider the following system which is non-
minimum phase, described by: 

 21

12

211

)(

)(

44)(

xxty

xtx

uxxtx

−=

=

+−−=

ɺ

ɺ

           (30) 

Which can be written as equation (1) being 

[ ]
4 4 1

, , 1 1
1 0 0

A B C
− −   

= = = −   
   

    (31) 

Its corresponding transfer function is: 

2

1
( )

4 4P

s
G s

s s

−
=

+ +
        (32) 

The system has one zero at the right half plane. It 
can see that the relative degree of the system is 2. 
For the design of the predictive control it was 
considered 3

y
N = and 0uN =  in order to not carry 

out the cancellation. 
To obtain the prediction of the output, its 

derivatives are expressed as the equation (7) 
 

*( , ) ( ) ( )y t T y t T y t= + −

1 20
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1 2

3 2
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44 64( ) 16
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      
− −      

(33) 

 
The control signal is given by equation (16) 

)( 0YwKu rNu
−=   (34) 

where 

0

1

2

3

r

r

r
w

r

r

− 
 − =
 −
 
− 

   (35) 

 and 

[ ]1
0 1 2 3[ ] [ ]T T

y yK H T H H T b b b b−= =    (36) 

 
The last equation only depends on T and the 

elements of the matrix H, so they will be constants 
by substituting the equations (33) - (36) the 
following expression is  obtained. 

 

1 2 3 2 2 3 3 1 1 2 3

2 2 3 3 2 2 2 3 3

( ) (5 16 44 ) ( ) (4 20 64

) ( ) ( )

u t b b b r b rb x t b b b

r b rb x t r b rb w

= − + + + + − +

− − − +
  (37) 

 
To analyze the closed-loop response, the above 

equation is substituted into equation (30), obtaining: 
1 1 2 3 2 2 3 3 1 1 2

3 2 2 3 3 2 2 2 3 3

2 1

1 2

( ) ( 4 5 16 44 ) ( ) ( 4 4 20

64 ) ( ) ( )

( ) ( )

( ) ( ) ( )

x t b b b r b rb x t b b

b r b rb x t r b rb w

x t x t

y t x t x t

= − + − + + + + − + −

+ − − − +

=

= −

ɺ

ɺ

 (38) 

 
The above equation is rewritten as follows  

1 1 2( ) ( ) ( )LC LC LCx t a x t b x t c w= + −ɺ    

   (39) 
Where 

1 2 3 2 2 3 3

1 2 3 2 2 3 3

2 2 3 3

4 5 16 44

4 4 20 64
LC

LC

LC

a b b b r b rb

b b b b r b rb

c r b rb

=− + − + + +

=− + − + − −

= +

 

 
The corresponding closed loop transfer function is 

as follows 

 
2

( )

( )
LC LC

LC LC

c s cY s

W s s a s b

− +
=

− −
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Where 
1 2

1 1 2 3

2 2 2 3 3

4 5 16 44
LC LC LC

LC
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a a a

a b b b
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and 
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1 2

1 1 2 3

2 2 2 3 3

4 4 20 64 0
LC LC LC

LC

LC

b b b

b b b b

b r b rb

= +

=− + − + =

=− −

 

 
It is easy to see that 

2 2LC LC LCb b a= =−              

 
To make the system output asymptotically tracks

the reference, it is necessary that 

2LC LC LCc b a=− =  

 
so equation (40) becomes 

2 2
2

2
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( )
LC LC

LC

LC LC

a s aY s
G s

W s s a s a

− +
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− +
 
The necessary and sufficient condition for 

stability is that all poles of GLC(s) have negative real 
parts. Therefore, the following conditions
necessary 

2

1 2

1

0

0

0

LC

LC

LC LC

LC

a

a

a a

a

<

>

>

<

  

Equation (37) is rewritten as follows 

1 2 3 1 1 2 3 2

2 2 3 3
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( ) ( )

u t b b b x t b b b x t

r b rb e t

= − + + − +
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Where 
( ) ( )e t w y t= −  

 
To analyze the open loop response, the above 

equation is substituted into equation (30), obtaining
 

1 1 2 3 1 1 2

3 2 2 2 3 3

2 1

1 2
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The above equation is rewritten as follows
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The corresponding open loop transfer function is 
as follows 

2

( )
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LA LA

LA LA
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It is easy to see that 

4 4 20 64 0 

              (43) 

asymptotically tracks 

 (44) 

( )LCG s  (45) 
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(s) have negative real 
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       (46) 

 
 

1 2 3 1 1 2 3 2( ) (5 16 44 ) ( ) (4 20 64 ) ( )u t b b b x t b b b x t   (47) 

loop response, the above 
equation is substituted into equation (30), obtaining: 

1 1 2 3 1 1 2( ) ( 4 5 16 44 ) ( ) ( 4 4 20x t b b b x t b b= − + − + + − + −

   (48) 

he above equation is rewritten as follows  
( ) ( ) ( ) ( )x t a x t b x t c e t  

4 4 20 64 0   (49) 

oop transfer function is 

  (50) 
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Conditions of equation (46) are conserved: 
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It is possible to obtain the 

function. 
2 2

2
1

( )
( ) ( ) ( )

( )
LC LC

LA C P

LC

a s aY s
G s G s G s

E s s a s

− +
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2

2
2

( 4 4)( )
( )

( )
LCLA

C

P LC

a s sG s
G s

G s s a s

− + +
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−

Figure (1) shown the LHP pole
but there is no RHP pole-zero cancellation when the 
product GcGP   formed, with this,
guaranteed. Also, the closed loop has all its poles in 
left half plane. Therefore, the closed loop is stable. 

 

Fig. 1. Closed Loop Syste

 

5 Simulation 
To show the effectiveness of controller CGPC 
simulation will be presented. The example used in 
the simulation is given by equation (30) 

21
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)(

)(

44)(

xxty

xtx

xxtx
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−−=

ɺ
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The control order has the function to constrain 

the predicted input. When the N

control, input is constrained to be constant in the 
future, i.e. derivatives of u(t) are taken equal zero. 
Small value of Nu gives less active control 
slow response, which is good for the no
phase systems. 

The parameters are chosen as 
r0=0, r1 =0, r2 =-3, r3 =8, obtaining:

 

( )LAG s= =       (51) 

Conditions of equation (46) are conserved:  

  (52) 

It is possible to obtain the controller transfer 

( ) ( ) ( )LA C PG s G s G s= = =      (53) 

2

1

( 4 4)

P LC

a s s

G s s a s

− + +

−
       (54) 

 
LHP pole-zero cancelation, 
zero cancellation when the 

, internal stability is 
. Also, the closed loop has all its poles in 

left half plane. Therefore, the closed loop is stable.  

 
Closed Loop System 

To show the effectiveness of controller CGPC 
simulation will be presented. The example used in 
the simulation is given by equation (30)  

2 ux +

 

The control order has the function to constrain 
Nu=0 the predicted 

control, input is constrained to be constant in the 
are taken equal zero. 

gives less active control u(t) and 
which is good for the non-minimum 

chosen as Nu=0, Ny =3, T=3, 

obtaining: 
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The assumptions given by equation (46) 
satisfied, therefore, the closed loop transfer function 
given by 

2

( ) 0.4071( 1)

( ) 0.892 0.4071

Y s s
G s

W s s s

− −
= =

+ +
 

is stable as all its poles are Hurwitz. 
The open loop transfer function is given by

2

( ) .4071( 1)
( )

( ) 1.2991 LA

Y s s
G s

E s s s

− −
= =

+
 
Finally, the controller transfer function is given 

by 
2( ) 0.4071( 4 4)

( ) ( 1.2991)

U s s s
G s

E s s s

− + +
= =

+
 
Just cancels the poles in the left half plane, due to

the zero s=1 is not cancelled, the internal stability
ensured. Figure (2) shown the output response when 
the reference is a unit step. 
 

Fig. 2. System output response 

 

6 Conclusion 
One of the main advantages of CGPC control 
schemes is that when Nu= Ny -r, for minimum and 
stable systems, on-line optimization is not require
and asymptotic tracking of the smooth reference 
signal is guaranteed. It was shown that large 
not require a bigger computational effort, because 
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given by equation (46) are 
the closed loop transfer function 
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ensured. Figure (2) shown the output response when 

 
System output response  

One of the main advantages of CGPC control 
for minimum and 

line optimization is not required, 
and asymptotic tracking of the smooth reference 
signal is guaranteed. It was shown that large Ny does 
not require a bigger computational effort, because 

the control depends only on the r
thus the rest of the derivatives only have infl
in obtaining the parameters of ti , which just depends 
on T. Then it is possible to calculate the parameters 
βi considering the largest Ny., without the use of the 
remaining derivatives. A closed
function was found, the characteristic polynomial 
must be Hurwitz, in order to ensure 
stability. 

 
When the system is stable and non

phase, there is LHP pole-zero cancellation, but there 
is no RHP pole-zero cancellation when the product 
GcGP   formed, with this internal stability is 
guaranteed. Also, the closed loop has all its poles in 
left half plane. Therefore, the closed loop is stable. 
Condition for stability for the numerical example 
were given. The controller is composed by an 
integrator and a low pass filter
zero error tends to zero. 
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